Conic optimization: an elegant framework for convex optimization
نویسنده
چکیده
The purpose of this survey article is to introduce the reader to a very elegant formulation of convex optimization problems called conic optimization and outline its many advantages. After a brief introduction to convex optimization, the notion of convex cone is introduced, which leads to the conic formulation of convex optimization problems. This formulation features a very symmetric dual problem, and several useful duality theorems pertaining to this conic primal-dual pair are presented. The usefulness of this approach is then demonstrated with its application to a wellknown class of convex problems called lp-norm optimization. A suitably defined convex cone leads to a conic formulation for this problem, which allows us to derive its dual and the associated weak and strong duality properties in a seamless manner.
منابع مشابه
Projection methods in conic optimization
There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called regularization algorithms for linear con...
متن کاملB-475 Lagrangian-Conic Relaxations, Part I: A Unified Framework and Its Applications to Quadratic Optimization Problems
In Part I of a series of study on Lagrangian-conic relaxations, we introduce a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization problems (QOPs) and polynomial optimization problems (POPs). The framework is constructed with a linear conic optimization problem (COP) in a finite dimensional vector space endowed with an inner product, where the cone used is not...
متن کاملLagrangian-Conic Relaxations, Part I: A Unified Framework and Its Applications to Quadratic Optimization Problems
In Part I of a series of study on Lagrangian-conic relaxations, we introduce a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization problems (QOPs) and polynomial optimization problems (POPs). The framework is constructed with a linear conic optimization problem (COP) in a finite dimensional vector space endowed with an inner product, where the cone used is not...
متن کاملOn Verified Numerical Computations in Convex Programming
This survey contains recent developments for computing verified results of convex constrained optimization problems, with emphasis on applications. Especially, we consider the computation of verified error bounds for non-smooth convex conic optimization in the framework of functional analysis, for linear programming, and for semidefinite programming. A discussion of important problem transforma...
متن کامل